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A space cut-off approach to scattering 
involving Coulomb-like potentials 
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Department of Mathematics, University of Toronto, Toronto. Canada, M5S 1Al 

Received 12 November 1973. in final form 19 March 1974 

Abstract. A prescription is given by which the distorted waves and the on-energy-shell 
T matrix for particles interacting via Coulomb-like potentials can be determined from the 
corresponding screened distorted waves and on-energy-shell screened T matrix. 

1. Introduction 

The cut-off or screened approach provides a method for studying scattering involving 
Coulomb-like potentials via the standard formalism of short-range scattering theory. 
In this approach the Coulomb potentials are replaced by screened Coulomb potentials 
which are chosen to be of short range and to reduce to the Coulomb potential when the 
cut-off is removed. Since the screened system of particles involves only short-range 
potentials the standard formalism of short-range potential scattering theory is valid. 
For example in the case of three-particle scattering the Faddeev equations (Faddeev 
1965) can be used, at least in principle, to determine the distorted waves and T matrix 
of the cut-off scattering theory. The key question is whether the distorted waves and 
T matrix of the screened scattering theory converge to the corresponding distorted 
waves and T matrix of the Coulomb-like scattering theory as the cut-off is removed. 

In this paper it will be shown that if the distorted waves and the T matrix of the 
cut-off stationary scattering theory are first multiplied by certain momentum and 
cut-off dependent phase factors then the resulting expressions will converge to the 
corresponding distorted waves and T matrix of the Coulomb-like scattering theory. 

The physical system will be assumed to consist of N spinless distinct particles inter- 
acting via Coulomb-like potentials. Thus the system will be described by 

where H acts in the Hilbert space 2 = 
to be Coulomb-like, ie 

and the two-body potentials are assumed 

Vit(X) = Vlf!(x) + Cib i , lX l  - (1.2) 

Vjf!(x) = O(lX1 - 2  - C O ) ,  Eo > 0. (1.3) 

where &i denotes the charge of the ith particle and 
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In order to relate the Coulomb-like scattering theory to the corresponding cut-off 
scattering theory we will make use of the time-dependent formulation of scattering 
involving Coulomb potentials first given by Dollard (1963, 1964). It was shown that 
there exist 'modified' or 'renormalized' (PrugoveEki 1971 b) wave operators defined by 

(1.4) 

with P(Y)  denoting the projection onto the channel subspace 
take the following form (Dollard 1963, 1964) : 

The unitary operators 

t > O  { ",, t < O  
c ( t )  = (1.5) 

with M j  and e j  denoting the total mass and charge of thejth fragment of the n-fragment 
system and V j  representing the gradient with respect to the coordinates of the centre-of- 
mass of the jth fragment. 

In 5 2 the relationship between the Coulomb-like distorted waves and the corres- 
ponding distorted waves for the cut-off Coulomb-like potentials is derived. The deriva- 
tion of this relationship is a generalization of results obtained previously (PrugoveEki 
and Zorbas 1973b) which involved screening only between fragments. Section 2 will 
be concerned with the case when screening is introduced between the individual particles. 

In 0 3 a prescription is given which allows one to  recover the T matrix for Coulomb- 
like interactions from the corresponding T matrix for cut-off Coulomb-like interactions. 

The paper concludes with a general discussion of the applicability of the cut-off 
approach to potential scattering. 

2. The cut-off approach to the Coulomb-like distorted waves 

In this section the relationship between the Coulomb-like distorted waves and the 
corresponding cut-off distorted waves will be derived. This will be accomplished by 
generalizing a technique first used by Dollard (1966, 1968) for proving that the two- 
particle wave operators for adiabatically switched or screened Coulomb-like potentials 
converge to zero when the switching or screening is removed. 

There are several possible ways to  introduce screening within a system of particles. 
I t  will prove convenient when deriving the T matrix formalism in 0 3 to distinguish 
two cut-off scattering theories. When all Coulomb potentials are screened the screened 
system of particles will be assumed to  interact via the following hamiltonian : 

HI = H,+ Vi;',+ 1 ~ i ~ ~ , g ~ , ( ~ ~ i - x ~ , ~ ) ~ ~ i - x , , ~ - l +  t(.,)(R) 
I < I '  

I .  I members of 
the same fragment 

Y Y ) ( R )  = V S ' +  1 eiei.g:!(lxi -xi , l) lxi  -xi.l - (2.1) 
[ < I '  

I , [ '  members of 
different fragments 

with V S )  denoting all short-range potentials which are not contained in the channel 
hamiltonian If?) = H I  - yY)(R). For the case when the Coulomb potentials acting 
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within the fragments of the channel y are not screened the system of particles will be 
described by the following hamiltonian : 

H ,  = H o  + Vl:)+ 1 
I < I ’  

1 .1 ’  members of 
the same fragment 

$ i8 i , l~ ,  -x i , [  - + V.JR) 

with i(?)(R) given in (2.1). The screening functions g;. will be assumed to be Schwartz 
functions for each i, i’ which satisfy the following requirements : 

lim g[,(() = 1 
R‘+CC 

v = 0,1,. . . ,wi th  CO = 1. (2.3) 

If the system of particles involves compound fragments we will also require the g:. 
for each i, i ‘  to satisfy the following condition : 

lg;m -g;,(1)51 G Clv - 41. (2.4) 

One can easily see that the conditions (2.3) and (2.4) are satisfied by the exponential 
screening function 

g5(4) = exP(-R-lltl). (2.5) 

We note that the condition (7.3)t imposed on the screening functions by PrugoveEki 
and Zorbas (1973b) only applies to the exponential screening function as stated. This 
can be rectified by replacing the requirement (7.3) by the condition contained in (2.3) 
of this paper. With this replacement all the results concerning cut-offs contained in 
PrugoveEki and Zorbas (1973b) are valid as stated for any screening function which 
satisfies (2.3). 

We will now define cut-off dependent operators which will provide the link between 
the renormalized and cut-off wave operators. Thus for It1 > to  > 1 we define the 
following operators : 

&?2iY)(t ; R) = exp(iH,t)UIY)(t)PjY), 1 = 1,2 (2.6) 

where H ,  and H ,  are defined in (2.1) and (2.2) respectively and Ply), 1 = 1 ,2  are the 
projection operators which project onto the y channel subspace XjY),l = 1,2.  The 
unitary operators Ujy)(t)  are given by 

Ujy)(t)  = exp(-iKIY’(t)), 1 = 1,2 (2.7) 

with 

chosen so as to reduce to (1.5) when R = CO. 

We will now require the following lemmas which are generalizations of the time- 
dependent results proven by Dollard (1966) for the case of two particles interacting via 
Yukawa potentials. 

t The first requirement in (7.3) (PrugoveEki and  Zorbas 1973b) should read l((R-l)vg$()l Q C, 
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Lemma 2.1. Suppose that the screening functions g&. for each k ,  k' are Schwartz functions 
which satisfy the conditions (2.3) and (2.4). In addition assume that the bound state 
wavefunction + f ( x ! ,  . . . , xli- ') for each fragment i of the channel y with x:,. . . , xYi- ' 
denoting the internal coordinates of the fragment satisfies for some p > 0 

dx! . . , dxll-'(+f(x!, . . . , ~ ~ ~ - ' ) l ~ l x { l ~  < e, 
where e is a constant which is independent of R. Then the strong limits 

j = 1,. . . , n,-1 (2.9) J 
s-  lim fijy)(t; R )  = fi{2(R) (2.10) 

r +  i CC 

exist and the convergence is uniform in R > 0. 

In order to prove (2.10) it is sufficient to show that for some t o  > 1 

for all Y in a dense subset of %('i) where C' is a constant which is independent of R. 
The proof of the inequality (2.11) is analogous to the proof of the existence of the 
renormalized wave operators (Dollard 1963, theorem 4, p 148). The technical conditions 
(2.3) and (2.4) placed on the screening functions gfk! are required in order to obtain an 
R independent bound. Since the detailed proof of the above lemma is somewhat 
involved it will be given elsewhere (Zorbas 1974). 

The condition (2.9) in the case 1 = 2 can be shown to be satisfied if each potential 
in the ith fragment is assumed to be a C" function on an open subset of R3 whose 
complement is of measure zero (Hunziker 1966a, 1966b, theorem 4). In order for (2.9) 
to be satisfied in the case I = 1 we must also require that the bound can be made in- 
dependent of R. 

The proofs of the following two lemmas are analogous to the proofs of lemma 6 and 
lemma 7 respectively of PrugoveEki and Zorbas (1973b) and thus will be omitted. 

Lemma 2.2. Suppose the projectors Plcr) in (2.6) converge strongly to the projector 
Po') in (1.4), ie 

(2.12) 

(2.13) 

(2.14) 

We note that for screened scattering theories whose hamiltonian is given by (2.2), 
ie 1 = 2, condition (2.12) is immediately valid. For 1 = 1 condition (2.12) is a question 
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of bound state perturbation theory. Indeed if corresponding to each eigenfunction 
I+9i of the ith fragment there exists an eigenfunction I+9/ of the cut-off hamiltonian for the 
ith fragment which converges strongly to +i as the cut-off is removed then (2.12) will 
be true. 

Lemma 2.3. The wave operators 

Rij (R)  = s - Iim exp(iHi,t) exp( - iHfY)t)PIY) 

Rj?(R) exp( TiA(?)(R)) = aj?(R) 

t - i m  

exist and 

for each 0 < R < CO where 

(2.15) 

(2.16) 

(2.17) 

with pr collectively denoting the centre-of-mass momentum variables and o, the internal 
degrees of freedom variables. 

The following theorem will yield the representation of the renormalized wave 
operators in terms of the cut-off wave operators. 

Theorem 2.1. Consider the cut-off scattering theories described by (2.1) and (2.2) with 
the Schwartz functions g:. for each i, i' satisfying the conditions (2.3) and (2.4). Further- 
more assume that the requirements (2.9) and (2.12) are satisfied. Then 

where A(?)(R) is given by (2.17). 

Proof. The above relations follow immediately from (2.13) and (2.16). 

In order to derive the relationship between the Coulomb-like distorted waves and 
the cut-off Coulomb-like distorted waves we must express (2.18) in terms of eigen- 
functions. This can be done by applying the extended Hilbert space formalism (Prugo- 
veEki 1973b) to the relations (2.18) for the case 1 = 2. Since the screened theory (2.2) does 
not involve cut-offs in the channel hamiltonian the corresponding momentum eigen- 
functions @&+ do not depend on the cut-off parameter R. Thus denoting 

(Ryi (R)* t@bY,),O,) (x ; R)  = @$':',Jx ; R), (2.19) 

as the cut-off distorted waves and the Coulomb-like distorted waves respectively with 
a dagger denoting the bra-adjoint (PrugoveEki 1973b) we arrive at the following 
relations : 

(R($)*t@(Y) Pv.% )(x) = p i  P,,O,(X) 

@$),:v(x) = lim exp( T iA(Y)(R))@bYy',;,(x ; R) .  (2.20) 
R + + m  

The pointwise interpretation of the cut-off limit R + + crc, depends on the assump- 
tion that the limit exists. If this limit does not exist in a pointwise sense then the relations 
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(2.20) are to be understood in the sense of their derivation from the Hilbert space 
relations (2.18). For a further discussion of the cut-off approach to the Coulomb 
distorted waves we refer the reader to PrugoveCki and Zorbas (1973b). 

3. A cut-off formalism for the T matrix 

The relationship between the on-energy-shell T matrix for Coulomb scattering denoted 
by ( p p ,  opl cslpk, w : ) ~ ( ~ ) = ~ , ~ ) ,  (PrugoveCki and Zorbas 1973b, equation (4.18)) and the 
corresponding on-energy-shell screened T matrix will be derived in this section. In 
order to simplify the derivation of this relationship we will distinguish two cases depend- 
ing on whether the scattering process does or does not satisfy the following condition 
(to be denoted 3.A). 

The scattering process which is associated with the original scattering system by 
neglecting all uncharged particles is such that it does not involve a re-arrangement of 
the charged particles. 

In the case of collisions for which condition (3.A) is satisfied the following relation- 
ship will be shown to hold: 

+ lim [exp(iA'")(R)+iA'P'(R))(ps, opl I.;s)(R)Q:"'(R)Ipk, O ~ ) I ~ W ) = E W  (3.1) 
R - + x  

where the on-energy-shell restriction is denoted by E'p' = E(') with 
n 

E'" = 1 ( 2 M j ) -  'pf + E ( y l  (3.2) 

and .E,,) denoting the internal energy of the fragments. In the case of collision processes 
for which condition (3.A) is not satisfied analogous relations (3.14) to those above will 
be shown to hold. 

The derivation of (3.1) and (3.14) will be based on the T operator cp which is given by 

j =  1 

In order to simplify the comparison with the results of PrugoveEki and Zorbas (1973b) 
we will restrict To as follows 

where Q'$A.) = Q $ ) P ( Y ) A ~  with P(y)Av the projection operator which projects onto the 
subspace of functions of &'(y) whose support is contained in the compact subset A, of 
momentum space. Due to the localized nature of the momentum eigenfunctions in 
momentum space the above restriction will not affect the derivation of (3.1) and (3.14) 
and will be in accord with the derivation of the on-energy-shell Coulomb T matrix 
(PrugoveCki and Zorbas 1973b). We also note that the results of $ 2  are valid when 
restricted to P ( y ) A y & ' ( y ) .  
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By lemma (2.2) we can express T,$ as follows 

We will now require the following lemma which will enable us to relate T$ to the 
cut-off T operators. 

Lemma 3.1. Suppose that the conditions (2.12) are valid and that the wave operators 
of the cut-off scattering theories R ~ P Y ( R )  satisfy for each 0 < R .c 00 

Qjp,AB(R)*QjajA..(R) = 6 Z P  p ' P ) A s .  I (3.5) 
Furthermore assume that 

w-  lim exp( f 2iA(")(R)) = 0. 
R + + m  

Then 

w - lim exp(iA(P'(R))Q[!AB(R)*Qp?Aa(R) exp(iA'")(R)) = 0 (3.7) 
R - + m  

for all channels a and B. 

Proof. The case a # j follows immediately by (3.5). For a = B we can write for each 
O < R < C O  

exp(iA(")(R))np2Aa(R)*Qf!!Aa exp(iA(")(R)) = e~p(2iA("'(R))Pp)"~. 

Since Pp)Au converges strongly as R -, + 00 and exp(2iA(")(R)) converges weakly to 
zero as R .+ + CO we conclude that (3.7) is true. 

The relations (3.5) for a = fl are valid since Qp?Am(R) are partial isometries for each 
0 < R < CO (PrugoveEki 1971a, theorem (2.2), lemma (2.1), p 418). The case a # fi  
follows from the uniqueness of the asymptotic states (PrugoveEki 1971a, theorem (8.1), 
p 583). Due to the rapidly oscillating behaviour of the functions for large R it is easy 
to see that condition (3.6) is true. 

Using the relations (3.7) we can rewrite (3.4) as follows 

T$ = w - lim + exp(iA'p'(R))T~P:,(R) exp(iA(")(R)) 
R-+a: 

where 

1 
2x1 T$;l(R) = -(Qja,AS(R) - Q p ( R ) ) * n p ( R )  (3.9) 

corresponds to the T operator of the cut-off scattering theories. Thus (3.8) yields the 
relationship between the T operator for Coulomb potentials and the corresponding 
screened T operators. 

In order to obtain the standard expression for the on-energy-shell screened T matrix 
we must express the screened T operators (3.9) in terms of Riemann-Stieltjes integrals 
(PrugoveEki 1971a) 
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Under the assumption that the following intertwining properties hold 

€ € 
Qf"A=(R) = np?(R) i, E R' (3.10) ( H ,  - + € 2  (HI"' - + € 2  ' 

and applying lemma 2.1 of Prugovecki (1973a) we obtain for T&,(R) 

(3.11) 

We now note that when the system of particles satisfies condition (3.A) the relations 
(3.10) are valid for the screened hamiltonian given by (2.2), ie I = 2. When condition 
(3.A) is not satisfied we must resort to the cut-off scattering theory whose screened 
hamiltonian is given by (2.1), ie I = 1, for which the intertwining properties (3.10) are 
valid. 

In order to derive (3.1) we must express (3.8) with T$,(R) given by (3.11) in terms of 
momentum eigenfunctions. Since we are dealing with a scattering process which 
satisfies the condition (3.A) it is convenient to work with the screened theory whose 
hamiltonian is given by (2.2), ie I = 2. The expansion of the relation (3.8) in terms of 
momentum eigenfunctions @!)+,, can be performed in an analogous manner to the 
expansion of the T operator in terms of momentum eigenfunctions (PrugoveEki 1973b) 
which yields with h, = (@.J;:',,ylh) the following equality : 

We note that the restriction of the integration in (3.12) to the regions A, and A, is due to 
the following equality Qq)Ay@$':,,y = n~)xA,(P,)@~~,,., . The relation (3.1) follows for 
all pp E Ab and p ,  E A, from (3.12) under the assumption that the limit R + + x and 
the integrations can be interchanged. 

In the case of collisions for which condition (3.A) is not satisfied we must resort to 
the cut-off theory for which all Coulomb potentials are screened (2.1). The channel 
hamiltonians H i p )  and H'$ are now dependent on the cut-off parameter R which implies 
that the eigenfunctions depend on R via the bound states. Thus expanding (3.8) with 
the cut-off T operator Tt,;,(R) given by (3.11) in terms of R-dependent eigenfunctions 
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x (@;;),oo(w yp)(R)wAU(R)l  @:&@))2d(R). (3.13) 

Under the assumption that the limit R + + c/3 and the integrations and summations 
can be interchanged and the further assumptions that the screened bound states with 
total energy E,,,(R) converge pointwise as R + + 00 to the Coulomb-like bound states 
with energy E( , )  we arrive at  the following relation : 

( P o .  wpl TZplP:, 4 ) E ' P I  = E ( = ) '  

= lim exp(iA(")(R) + iA(p)(R)) 
R - i m  

x ( P p ,  wp; RIyp)(NQYL(R)IP;, 0:; R ) E ( B I = E ' u Y  (3.14) 

for all p p  E AD and p a  E As. 
The assumption that the limit R + + x can be taken under the integral depends 

explicitly on the pointwise limit of the integrand existing. The following lemma will 
indicate that even for the two-body on-energy-shell screened T matrix the pointwise 
limit interpretation (3.1) is not valid. 

Lemma 3.2. Suppose that for the case of two-body scattering the conditions (3.5) and 
(3.6) are satisfied and that the ranges of the renormalized wave operators are equal, 
ie R ,  = R -  . Then the restricted S operator SA = Qt*Q! can be written as 

S s  = s - lim exp(iA(R))Rt (R)*Q! ( R )  exp(iA(R)) (3.15) 
R - + m  

and 

pA = 2niw- lim TA(R) .  
R - + m  

(3.16) 

ProoF By lemma (2.2) we have 

SA = w - lim exp(iA(R))R$(R)*Q5(R) exp(iA(R)). (3.17) 
R + + m  

Since SA is unitary the following inequality is valid for all f~ L2(R3)  

Ilexp(iA(R))R:(R)*Q"R) exp(iNR))fl/ d IlS'fiI 

which together with (3.17) implies (3.15) (PrugoveEki 1971a, lemma (6.2), p 334). 
The screened T operator is given by 

I 
TA(R)  = -(Q!(R)* -Q$(R)*)Rh(R). 2n1 

By (3.5) we have 
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Thus in order for (3.16) to hold we require that 

w- lim R$(R)*R!(R) = 0. 
R + + m  

This relation is a consequence of (3.15), (3.6) and the following equality: 

R$(R)*R!(R) = exp( - 2iA(R)) exp(iA(R))R$(R)*Rh(R) exp(iA(R)). 

4. Conclusions 

It must be emphasized that due to the Hilbert space approach adopted in this paper 
all relations involving eigenfunctions are valid only in the sense of their derivation 
from the corresponding operator relations. For example in the case of two-body 
Coulomb scattering the relation (3.16) when written in terms of momentum eigen- 
functions implies that the pointwise limit relation (3.1) between the on-energy-shell 
Coulomb-like T matrix and the screened on-energy-shell Coulomb-like T matrix 
does not hold. Thus this relationship should be interpreted in the weak sense (3.12). 

For the case of two-body Coulomb-like scattering the results of lemma (3.2) in 
conjunction with (3.12) seem to suggest that the screened on-energy-shell T matrix 
has the following form for large R : 

(PI v(R)o- (R)[p‘)pz/zm = p ’ z / z m  

= exp( -2iA(R))(plT[p’),*,zm=p.2,,, 

(4.1) 
(2.)2 +- [ 1 - exp( - 2iA(R))]G(cos 8 -COS 8’)S(4 - 4’) 
mP1 

where m is the reduced mass, p ,  8, 4 (p’, e‘, 4’) denotes the polar coordinates of the 
relative momentum p (p ’ )  and (PI T(p’)p2,2m=p,2,2m denotes the on-energy-shell Coulomb 
T matrix. Much of the current work on the Coulomb T matrix (cf Chen and Chen 1971, 
Nuttall and Stagat 1971, and for a general survey with references to earlier results 
Chen and Chen 1972 and McDowell and Coleman 1970) has been concerned with 
understanding the energy-shell limit of the expression (PI V,Sz-lp’). A calculation has 
been performed however for the cut-off Coulomb scattering amplitude (Rodberg and 
Thaler 1967, p 72, equation (5.50)). The results of this calculation can be shown to 
agree with the scattering amplitude obtained from (4.1) by the use of the relation 

m 
f R @ )  = -%(PI ww-(R)b’)*- t  

It has been shown (Dollard 1968) that the screened approach is applicable to time- 
dependent scattering theory involving short-range potentials. In particular for the 
channel where all N particles are asymptotically free the screened short-range wave 
operators exist and converge to the short-range wave operators when the screening is 
removed. Expressing these time-dependent results in terms of eigenfunctions one can 
conclude that the screened short-range distorted waves and T matrix converge to the 
corresponding distorted waves and T matrix of the short-range stationary scattering 
theory when the screening is removed. 

t We note that a factor of I l k  is missing from the second term of equation (5.50) of Rodberg and Thaler (1967). 
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The cut-off approach can also be used to study long-range potentials other than the 
Coulomb potential. In the case of N particle scattering not involving bound states with 
the particles interacting via potentials having the asymptotic form r - ' ,  2 < I < 1, 
analogous results to those proven in this paper can be shown to hold (Zorbas 1974). 
For such potentials the function A(?)(R) takes the following form : 

( A ( y ) ( R ) ~ ) ~ y ,  my) 

where Cj, are real constants. 
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